產(chǎn)品介紹
從所周知,大數(shù)據(jù)已經(jīng)不簡簡單單是數(shù)據(jù)大的事實(shí)了,而最重要的現(xiàn)實(shí)是對(duì)大數(shù)據(jù)進(jìn)行分析,只有通過分析才能獲取很多智能的,深入的,有價(jià)值的信息?;谌绱说恼J(rèn)識(shí),大數(shù)據(jù)分析普遍存在的方法理論有哪些呢?
1.?可視化分析。大數(shù)據(jù)分析的使用者有大數(shù)據(jù)分析專家,同時(shí)還有普通用戶,但是他們二者對(duì)于大數(shù)據(jù)分析最基本的要求就是可視化分析,因?yàn)榭梢暬治瞿軌蛑庇^的呈現(xiàn)大數(shù)據(jù)特點(diǎn),同時(shí)能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
? 2.?數(shù)據(jù)挖掘算法。大數(shù)據(jù)分析的理論核心就是數(shù)據(jù)挖掘算法,各種數(shù)據(jù)挖掘的算法基于不同的數(shù)據(jù)類型和格式才能更加科學(xué)的呈現(xiàn)出數(shù)據(jù)本身具備的特點(diǎn)。另外一個(gè)方面也是因 為有這些數(shù)據(jù)挖掘的算法才能更快速的處理大數(shù)據(jù),如果一個(gè)算法得花上好幾年才能得出結(jié)論,那大數(shù)據(jù)的價(jià)值也就無從說起了。
? 3.?預(yù)測性分析。大數(shù)據(jù)分析最終要的應(yīng)用領(lǐng)域之一就是預(yù)測性分析,從大數(shù)據(jù)中挖掘出特點(diǎn),通過科學(xué)的建立模型,之后便可以通過模型帶入新的數(shù)據(jù),從而預(yù)測未來的數(shù)據(jù)。
?4.?語義引擎。非結(jié)構(gòu)化數(shù)據(jù)的多元化給數(shù)據(jù)分析帶來新的挑戰(zhàn),我們需要一套工具系統(tǒng)的去分析,提煉數(shù)據(jù)。語義引擎需要設(shè)計(jì)到有足夠的人工智能以足以從數(shù)據(jù)中主動(dòng)地提取信息。
? 5.數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理。大數(shù)據(jù)分析離不開數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理,高質(zhì)量的數(shù)據(jù)和有效的數(shù)據(jù)管理,無論是在學(xué)術(shù)研究還是在商業(yè)應(yīng)用領(lǐng)域,都能夠保證分析結(jié)果的真實(shí)和有價(jià)值。
因此,數(shù)據(jù)挖掘可以描述為:按企業(yè)既定業(yè)務(wù)目標(biāo),對(duì)大量的企業(yè)數(shù)據(jù)進(jìn)行探索和分析,揭示隱藏的、未知的或驗(yàn)證已知的規(guī)律性,并進(jìn)一步將其模型化的 有效的方法。
北京理工大學(xué)大數(shù)據(jù)搜索與挖掘?qū)嶒?yàn)室張華平主任研發(fā)的NLPIR大數(shù)據(jù)語義智能分析技術(shù)是滿足大數(shù)據(jù)挖掘?qū)φZ法、詞法和語義的綜合應(yīng)用。NLPIR大數(shù)據(jù)語義智能分析平臺(tái)是根據(jù)中文數(shù)據(jù)挖掘的綜合需求,融合了網(wǎng)絡(luò)采集、自然語言理解、文本挖掘和語義搜索的研究成果,并針對(duì)互聯(lián)網(wǎng)內(nèi)容處理的全技術(shù)鏈條的共享開發(fā)平臺(tái)。
NLPIR大數(shù)據(jù)語義智能分析平臺(tái)主要有采集、文檔轉(zhuǎn)化、新詞發(fā)現(xiàn)、批量分詞、語言統(tǒng)計(jì)、文本聚類、文本分類、摘要實(shí)體、智能過濾、情感分析、文檔去重、全文檢索、編碼轉(zhuǎn)換等十余項(xiàng)功能模塊,平臺(tái)提供了客戶端工具,云服務(wù)與二次開發(fā)接口等多種產(chǎn)品使用形式。